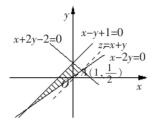
应考方略 数学有


 $\frac{2(1-y)}{\sqrt{5}\cdot\sqrt{4y^2+5}} \le \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}} = \frac{2}{5}$, 当 y=0 时,取得最大值.

六、构建解析几何中的斜率、截距、距离等模型研究最 值问题

例 8. 若 x, y 满足约束条件 $\begin{cases} x-y+1 \ge 0, \\ x-2y \le 0, \\ x+2y-2 \le 0. \end{cases}$ 则 z=x+y 的最大

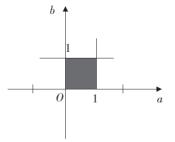
值为 _____

【解析】作出不等式组满足的平面区域,如图所示,由图知,当目标函数 z=x+y 经过点 $A(1,\frac{1}{2})$ 时取得最大值,即 $z_{max}=1+\frac{1}{2}=\frac{3}{2}$.

七、构建方程模型, 求根的个数

例 9. 已知函数 $f(x) = \begin{cases} 1-|x+1|, & x<1 \\ x^2-4x+2, & x \ge 1 \end{cases}$ 则函数 $g(x) = 2^{|x|} f(x) - 2$ 的零点个数为 个.

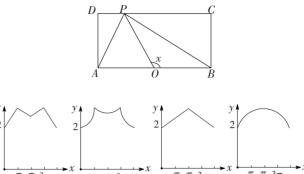
【解析】 $g(x)=2^{ls}f(x)-2$ 的零点个数,即是方程 $f(x)=\frac{2}{2^{lsl}}$ 的根的个数,也就是 y=f(x)与 $y=\frac{2}{2^{lsl}}$ 的图像的交点个数,分别作出 y=f(x)与 $y=\frac{2}{2^{lsl}}$ 的图像,如图所示,由图像知y=f(x)与 $y=\frac{2}{2^{lsl}}$ 的图像有两个交点,所以函数 g(x)有 2 个零点.


八、研究图形的形状、位置关系、性质等

例 10. 已知 0 < a < 1,0 < b < 1,则函数 $f(x) = x^2 \log_a b + 2x \log_b a + 8$ 的图像恒在 x 轴上方的概率为()

A.
$$\frac{1}{4}$$
 B. $\frac{3}{4}$ C. $\frac{1}{3}$ D. $\frac{2}{3}$

【解析】因为函数 f(x) 的图像恒在 x 轴上方,则 $4(\log_b a)^2 - 32\log_b b < 0$. 因为 0 < a < 1, 0 < b < 1, 所以 $\log_b a > 0$, $\log_a b > 0$,所以 $(\log_a b)^3 > \frac{1}{8}$,所以 $\log_a b > \frac{1}{2}$, 所以 $b < a^{\frac{1}{2}}$. 如图建立 a,b 的直角


坐标系,如图所示,图中 阴影部分的面积即为满足 条件 a,b 的范围. 因为 $S_{\mathbb{R}}=\int_{0}^{1}a^{\frac{1}{2}}\mathrm{d}a=\frac{2}{3}a^{\frac{3}{2}}\Big|_{0}^{1}=\frac{2}{3}$,所 $\frac{2}{3}$

以所求概率 $P = \frac{\frac{2}{3}}{1 \times 1} = \frac{2}{3}$,

故选 C.

例 11. 如图,长方形 ABCD 的边 AB=2,BC=1,O 是 AB 的中点,点 P沿着边 BC,CD 与 DA 运动,记 $\angle BOP=x$. 将动 P 到 A 、B 两点距离之和表示为 x 的函数 f(x),则 y=f(x) 的图像大致为 (

(B)

(A)

【解析】由已知,得当点 P在 BC 边上运动时,即 $0 \le x \le \frac{\pi}{4}$ 时, $PA + PB = \sqrt{\tan^2 x + 4} + \tan x$; 当点 P 在 CD 边上运动时,即 $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, $x \ne \frac{\pi}{2}$ 时 , $PA + PB = \sqrt{(\frac{1}{\tan x} - 1)^2 + 1} + \sqrt{(\frac{1}{\tan x} + 1)^2 + 1}$,当 $x = \frac{\pi}{2}$ 时, $PA + PB = 2\sqrt{2}$;当点 P 在 AD 边上运动时,即 $\frac{3\pi}{4} \le x \le \pi$ 时, $PA + PB = \sqrt{\tan^2 x + 4} - \tan x$,从点 P 的运动过程可以看出,轨迹关于直线 $x = \frac{\pi}{2}$ 对称,且 $f(\frac{\pi}{4})$ $> f(\frac{\pi}{2})$,且轨迹非线型,故选 B.

总的来说"数形结合法"是解决许多数学问题的重要方法,它可以将抽象数学问题具体化、准确化、形象化.用好数形结合可以使我们更深入准确地理解数学问题.

- 1. 在数学中函数的图像、方程的曲线、不等式所表示的 平面区域、向量的几何意义、复数的几何意义等都实现以形 助数的途径,当试题中涉及这些问题的数量关系时,我们可 以通过图形分析这些数量关系,达到解题的目的.
- 2. 有些图形问题,单纯从图形上无法看出问题的结论, 这就要对图形进行数量上的分析,通过数的帮助达到解题的 目的
- 3. 利用数形结合解题,有时只需把图像大致形状画出即可,不需要画出精确图像.
- 4. 数形结合法是解决高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时更方便,可以提高解题速度

责任编辑 徐国坚

(D)